

Table of Contents

	Overview

	API documentation
	Node

	Manually Connecting Nodes

	Node Connection Mini-language

	Pipeline

	GlobalState

Overview

	Consecution is:

	
	An easy-to-use pipeline abstraction inspired by
Apache Storm Topologies [http://storm.apache.org/releases/current/Tutorial.html].

	Designed to simplify building ETL pipelines that are robust and easy to test

	A system for wiring together simple processing nodes to form a DAG, which is fed with a python iterable

	Built using synchronous, single-threaded execution strategies designed to run efficiently on a single core

	Implemented in pure-python with optional requirements that are needed only for graph visualization

	Written with 100% test coverage

See the
Github project page [https://github.com/robdmc/consecution].
for examples of how to use consecution.

API documentation

Node

Nodes are the fundamental processing unit in consecution. A node is created by
inheriting from the consecution.Node class. You are free to declare as many
attributes and methods on a node class as you wish. You should not override the
constructor unless you really know what you’re doing. Instead, any
initialization you wish to perform can be carried out in the .begin() method.
In the descriptions below, it is assumed that the nodes being discussed have
been wired together into a pipeline and are ready to consume items.

See the
Github README [https://github.com/robdmc/consecution/blob/master/README.md]
for examples of how to wire nodes into pipelines.

Reserved Method Names

The following Node methods are not intended to be overridden, so you should not
define methods with these names in your node implementations unless you really
know what you are doing.

	top_node

	initial_node_set

	terminal_node_set

	root_nodes

	all_nodes

	log

	top_down_make_repr

	top_down_call

	depth_first_search

	breadth_first_search

	search

	add_downstream

	remove_downstream

	plot

There are also a number of private method names you should avoid. These can be
identified by looking at the source code [https://github.com/robdmc/consecution/blob/master/consecution/nodes.py]

Examples

Here is the simplest possible node you could construct:

from consecution import Node

class MyNode(Node):
 def process(self, item):
 self.push(item)

All nodes acquire a .push() method when they are wired into a pipeline. You
can call this method anywhere in your class except in the .begin() method.
The .push(item) method will take its argument and send it to the .process()
methods of the nodes that are immediately downstream in your pipeline graph.

Here is an example node defining all methods you can override. The
functionality of each method is explained in the code comments.

from consecution import Node

class MyNode(Node):
 def begin(self):
 # This sets up whatever state you want to exist before the
 # node begins processing any data. You can think of it as an
 # init method that runs just before the node starts processing.
 # In this example, we initialize a simple counter
 self.counter = 0

 def process(self, item):
 # This is the method that defines the processing you want to perform
 # on every item the node processes. You can place whatever logic
 # you want here, including calls the the .push() method.
 # In this example, we update the counter and push the item
 # downstream.
 self.counter += 1
 self.push(item)

 def end(self):
 # This method is called right after all items are processed.
 # This happens when the iterator being consumed by the pipeline
 # is exhausted. At that point the .end() methods of all nodes
 # in the pipeline are called. This is a good place for you to
 # push any summary information downstream.
 # In this example we push the results of our counter
 self.push(self.counter)

 def reset(self):
 # A pipeline can be reused and reset back to its initial condition.
 # It does this by calling the .reset() method of all its member
 # nodes. You can place whatever code you want here to reset your
 # node to its initial state.
 # In this example, we simply reset the counter.
 self.counter = 0

Node API Documentation

GroupBy Node

Consecution provides a special Node class specifically designed to do grouping.
It works in much the sameway as Python’s built in
itertools.groupby function. It expects to process nodes in key-sorted
order. In addition to the .process() method required of all nodes, you must
also define a .key() method that will extract a key from each item being
processed. See the Github project page for an example of using Groupby.

Manually Connecting Nodes

The Node base class is equipped with an .add_downstream(other_node) method.
This method provides detailed control over how nodes are wired together. It
simply adds other_node as a downstream relation.

Here is an example of creating a pipeline with one top node that broadcasts
items to two downstream nodes, and then collects their results into a single
output node.

from consecution import Pipeline, Node
from __future__ import print_function

class SimpleNode(Node):
 def process(self, item):
 print('{} processing {}'.format(self.name, item))
 self.push(item)

top = SimpleNode('top')
left = SimpleNode('left')
right = SimpleNode('right')
output = SimpleNode('output')

top.add_downstream(left)
top.add_downstream(right)

left.add_downstream(output)
right.add_downstream(output)

pipe = Pipeline(top)

pipe.consume(range(2))

Node Connection Mini-language

Consecution provides a concise domain-specific-language (DSL) for creating
directed acyclic graphs. This is the preferred method for connecting nodes into
a pipeline. However, you may occasionally find that your desired topology is not
easy to express in the DSL. For these situations, consecution provides a
lower-level escape hatch that allowes you to manually connect two nodes
together. These two levels of abstraction provide a very powerful interface for
constructing complex pipelines.

The DSL is inspired by the unix syntax for chaining together the inputs and
outputs of different programs at the bash prompt. You use the pipe symbol |
to connect nodes together. These pipe operators will always return an object of
one of the nodes in your connected topology. Below is an example of creating a
simple linear pipeline.

from consecution import Pipeline, Node
from __future__ import print_function

class SimpleNode(Node):
 def process(self, item):
 print('{} processing {}'.format(self.name, item))
 self.push(item)

left = SimpleNode('left')
middle = SimpleNode('middle')
right = SimpleNode('right')

wire nodes together with bash-like pipe operator
node_object = left | middle | right

You can now pass the node object into a pipeline constructor
pipe = Pipeline(node_object)
pipe.consume(range(2))

In order to create a directed acyclic graph (DAG) you need four basic
constructs:

	Send data from one node to a single other node

	Broadcast data from one node to a set of other nodes

	Route data from one node to one of a set of other nodes

	Gather output from several nodes into one node.

The DSL provides mechanisms for each of these constructs, and we will look at
each in turn.

Send data from single node to single node

Use simple bash-like pipe syntax to send data from a single node to another
node.

Send data from one to to a single other node using bash-like piping.
node1 | node2

Broadcast data from single node to multiple node

Broadcasting is accomplished by piping to a list of nodes. In the following
example, node1 will send each item it pushes to node2, node3, and
node4.

Broadcast to a set of nodes by piping to a list
node1 | [node2, node3, node4]

Routing from one node to one of multiple nodes

Routing is accomplished by piping to a list that contains a single callable and
any number of nodes. The following example will send even numbers to
even_node and odd numbers to odd_node.

Define a node class
class N(Node):
 def process(self, item):
 self.push(item)

Define a routing function. It takes a single argument being the item
you pushed. It should return a string with the name of the node
to which that item should be routed.
def route_func(item):
 if item % 2 == 0:
 return 'even_node'
 else:
 return 'odd_node'

Pipe to a list of nodes and a callable to achieve routing
N('top_node') | [N('even_node'), N('odd_node'), route_func]

Gather output from multiple nodes

Gathering output from a set of nodes is as simple as piping a list of nodes (and
possibly a route function) to a single node. In this example, the outputs of
node2, node3, and node4 will all be sent to node5.

Broadcast to a set of nodes by piping to a list
node1 | [node2, node3, node4] | node5

Pipeline

Once nodes are wired together, they need to be encapsulated into a pipeline
before they can operate on data. This is done by passing any node in the
network as the argument to the Pipeline constructor. On construction, the
pipeline will ensure you have a valid processing graph and will execute
initialization code to ensure that the nodes are efficiently connected.
Immediately after construction, the pipeline is ready to consume data.

Consuming Iterables

When the .consume(iterable) method is called a sequence of events occur in
exactly this order.

	The .begin() method on the pipeline object is called. You can override
this method to perform any task you’d like.

	The .begin() methods of all nodes in the network are called. They are
called in top-down order. What this means is that the .begin() method of
a node is guaranteed to not be called until the .begin() methods of all
its ancestors have been called.

	Items are read from the iterable argument supplied to the .consume()
method. These are fed through the topology of the processing graph one by
one. Each item is completely processed by the graph before the next one is
lifted off the iterable.

	The .end() methods of all nodes are called in top-down order.

	The .end() method of the pipeline is called.

Manually feeding Pipeline

In addition to consuming iterables, you can manually feed pipelines using the
.push() method on the pipeline itself. When you are finished pushing items,
you can manually call the .end() method. Here is an example.

from consecution import Node, Pipeline
from __future__ import print_function

class N(Node):
 def process(self, item):
 print(item)
 self.push(item)

pipe = Pipeline(N('first') | N('second'))
for nn in range(2):
 pipe.push(nn)
pipe.end()

Pipeline API Documentation

Pipelines support dictionary-like access to their nodes. Here are examples.

from consecution import Node, Pipeline

Define a node
class N(Node):
 def process(self, item):
 self.push(item)

Create a pipeline with two nodes
pipe = Pipeline(N('first') | N('second'))

Get reference to a node with dictionary syntax
first = pipe['first']

Replace a node with dictionary-like syntax
pipe['first'] = N('first')

GlobalState

The GlobalState class is a simple python class that supports both
dictionary-like and object-like attribute access. An object of this class will
be used as the default global_state attribute of a pipeline if you don’t
explicitly provide one in the constructor.

Index

 nav.xhtml

 Table of Contents

 		
 Table of Contents

 		
 Overview

 		
 API documentation

 		
 Node

 		
 Reserved Method Names

 		
 Examples

 		
 Node API Documentation

 		
 GroupBy Node

 		
 Manually Connecting Nodes

 		
 Node Connection Mini-language

 		
 Send data from single node to single node

 		
 Broadcast data from single node to multiple node

 		
 Routing from one node to one of multiple nodes

 		
 Gather output from multiple nodes

 		
 Pipeline

 		
 Consuming Iterables

 		
 Manually feeding Pipeline

 		
 Pipeline API Documentation

 		
 GlobalState

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

